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Autonomous robotic navigation in forested environments is difficult because of the highly variable appearance
and geometric properties of the terrain. In most navigation systems, researchers assume a priori knowledge
of the terrain appearance properties, geometric properties, or both. In forest environments, vegetation such
as trees, shrubs, and bushes has appearance and geometric properties that vary with change of seasons, veg-
etation age, and vegetation species. In addition, in forested environments the terrain surface is often rough,
sloped, and/or covered with a surface layer of grass, vegetation, or snow. The complexity of the forest en-
vironment presents difficult challenges for autonomous navigation systems. In this paper, a self-supervised
sensing approach is introduced that attempts to robustly identify a drivable terrain surface for robots operat-
ing in forested terrain. The sensing system employs both LIDAR and vision sensor data. There are three main
stages in the system: feature learning, feature training, and terrain prediction. In the feature learning stage,
3D range points from LIDAR are analyzed to obtain an estimate of the ground surface location. In the feature
training stage, the ground surface estimate is used to train a visual classifier to discriminate between ground
and nonground regions of the image. In the prediction stage, the ground surface location can be estimated at
high frequency solely from vision sensor data. C© 2012 Wiley Periodicals, Inc.

1. INTRODUCTION

Unmanned ground vehicles (UGVs) have demonstrated ef-
fective autonomous operation in a variety of settings such
as deserts, farms, and urban environments (Dahlkamp,
Kaehler, Stavens, Thrun, & Bradski, 2006, Manduchi,
Castano, Talukder, & Matthies, 2004; Thrun et al., 2006;
Wellington, Courville, & Stentz, 2006). Future applications
will require UGVs to operate autonomously in forested en-
vironments. Robust autonomous operation in a forest de-
pends on the ability of the UGV to distinguish the for-
est floor from the trees, bushes, shrubs, and other vegeta-
tion that can obstruct the UGV’s progress. This vegetation
can exhibit widely varying geometric properties (size and
shape) and appearance properties (color and texture) be-
cause of seasonal variation, the age of the vegetation, and
the species (type) of vegetation. This is in addition to varia-

tion in appearance that can arise because of weather effects
and variable illumination. To operate effectively in forested
environments, UGVs must identify the drivable terrain sur-
face. In previous research, the authors have developed a
LIDAR-based sensing system for forest robots that can ro-
bustly detect the terrain surface (McDaniel, Nishihata, &
Iagnemma, 2010). However, the LIDAR data acquisition
process was found to be time-consuming, preventing real-
time operation of the algorithm. In addition, the LIDAR
system employed in the work exhibited a relatively short
sensing range, less than 30 m, preventing the robot from
performing reliable long-range navigation.

In this paper, a novel approach to ground surface de-
tection in forested terrain is presented, which combines
LIDAR sensor data with vision sensor data in a self-
supervised learning framework. In this system, LIDAR sen-
sor data are acquired infrequently, and are used not only
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to identify the ground surface (using the technique pro-
posed in McDaniel et al., 2010) but also to automatically
supervise the training of a classifier based on visual fea-
tures (color and texture). The trained visual classifier can
operate at a high frequency, and because of the online learn-
ing paradigm, can adapt to changes in environment appear-
ance. It can also identify the position of ground surfaces
located at a significant distance from the camera. Our ex-
periments show that the resulting sensing system exhibits
good performance in several forested environments.

2. STATE OF THE ART

Because of the importance of terrain surface classification
for autonomous robots, the issue has been explored in the
past. There are three main strategies for this task: vision-
based, LIDAR-based, and vision/LIDAR-based.

2.1. Vision-Based

To solve the problem of terrain classification, many re-
searchers rely on stereo cameras for terrain classification
(Broggi, Caraffi, Fedriga, & Grisleri, 2005; Kelly & Stentz,
1998; Manduchi et al., 2004). A stereo algorithm finds pixel
disparities between two aligned images, calculating a three-
dimensional (3D) point cloud. By applying geometrical and
statistical heuristics to the 3D point cloud, the terrain sur-
face and obstacles can be classified. Stereo algorithms can
generate 3D point clouds at relatively high frequency (sev-
eral hertz). However, the resulting depth map is typically
short range and may be sparse.

Due to the limitation of stereo vision methods,
Hadsell et al. (2009) adopt a near-to-far self-supervised ar-
chitecture. They use a stereo algorithm to produce a 3D
point cloud; then ground plane and footline estimation
methods are applied to separate these points into ground,
obstacle, and footline classes. After projection of these la-
beled points onto images, the online learning framework
extracts the visual features and uses them to train a classi-
fier. The trained classifier can be used to predict long-range
visual data from images.

2.2. LIDAR-Based

There are also many researchers using LIDAR sensors to
detect the terrain surface for robot navigation (Elmqvist
2002; Hebert & Vandapel, 2003; Lalonde, Vandapel,
Huber, & Hebert, 2006; Wellington & Stentz, 2003). In gen-
eral, LIDAR sensors can return dense 3D point clouds,
however, scanning LIDAR sensors often operate at a rel-
atively low frequency (1 Hz or less). Fixed (nonscanning)
LIDAR sensors can operate at a high frequency; however,
they require an additional algorithm to accumulate data as
the robot moves. This algorithm relies on accurate robot
pose estimation, which is difficult to achieve in the forest,
where the terrain surface is often rough and sloped, and

the presence of a tree canopy makes GPS signal reception
unavailable.

Elmqvist (2002) separates 3D laser radar points into
several sampled grids and adopts an energy function of
the active shape models to evaluate the ground surface in
each grid. According to this evaluation, an energy map is
generated from those 3D grids. The lower the value of the
grid, the higher the probability that it belongs to the ground
surface.

Wellington & Stentz (2003) rely on multiple LIDARs to
collect 3D points and register them into a global map. This
mapping is learned by observing actual vehicle motion af-
ter driving over a given terrain. Associated with 3D points
on the map, four features are extracted from these points
and then used to train the robot for predicting the terrain
properties in the front of robot. This method has shown to
be effective in various environments.

In (Lalonde et al., 2006), the author used LIDAR to col-
lect 3D point clouds. Principal component analysis is ap-
plied to extract the first three eigenvalues from a symmet-
ric positive definite covariance matrix of neighboring 3D
points. Then a hand-labeled training data set is used to train
a terrain model. Last, the trained model is used for terrain
classification. In experiments, this method performs well
on various scenes.

2.3. LIDAR/Vision-Based

Due to the limitation of both the vision and LIDAR sen-
sors mentioned, (Dahlkamp et al. (2006), Konolige et al.,
(2009), Rasmussen (2002), Sofman et al. (2007), and Thrun
et al. (2006) combine vision and LIDAR into one system, to
mitigate the drawbacks of each approach.

Dahlkamp et al. (2006) apply a Kalman filter to es-
timate the robot pose based on measurements from two
differential GPS systems and a six-degree-of-freedom in-
ertial measurement unit (IMU). Based on the pose estima-
tion, 2D LIDAR points are projected into a 3D frame. Using
the PTA algorithm, the drivable points can be calculated.
Then, because the camera and LIDAR are calibrated and
registered with each other, points in the image associated
with drivable points in the 3D point cloud are labeled as
training data to train a visual classifier. Last, using the self-
supervised trained classifier, a prediction of the drivable
area in the image is made for robot navigation.

Sofman et al. (2007) apply a learning approach to
integrate both general feature-based estimation and self-
supervised locale-specific estimation to improve navigation
capabilities for unmanned ground vehicles. In their appli-
cation, they integrate overhead data and far-range sensor
data into an online learning framework. Both local infor-
mation and global information are used to yield a cost map
to improve robot navigation. Experiments show dramatic
improvement of navigation performance in traversal time,
distance traveled, and average speed.

Journal of Field Robotics DOI 10.1002/rob
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A key difficulty of self-supervised classification meth-
ods is ensuring that erroneous training data are not (au-
tomatically) inserted into the training process, because this
could degrade, rather than improve, classifier performance.
This is difficult, because in the self-supervised paradigm,
an expert is not available to discriminate between good and
bad training examples.

Forested environments often contain obstacles such as
trees and shrubs that may be in close proximity to one
another. This requires that 3D point clouds be generated
at a relatively high frequency, in order to rapidly iden-
tify the drivable terrain surface. This requirement makes
some LIDAR-based algorithms difficult to apply, because
of the relatively low bandwidth of LIDAR 3D point capture.
Camera-based navigation methods can operate at high fre-
quency; however, it is challenging to describe a consistent
model for the appearance of terrain surface in forest envi-
ronment (e.g., for approaches that rely on supervised clas-
sification to detect obstacles based on appearance). This
makes camera-only algorithms difficult to apply in forested
environments.

Here, a LIDAR/camera-based method for navigation
in forested environments is presented. This work adopts
a self-supervised approach that trains a visual classifier
based on the output of a LIDAR-based ground plane de-
tection method. This mitigates the drawbacks of LIDAR-
based methods (specifically, low-bandwidth data capture)
and vision-based methods (specifically, sensitivity to varia-
tion in scene appearance). The application of such a scheme
in a forested environment represents a novel contribution
to the literature. A novel approach to classifier training that
relies on morphological operations is introduced, with the
goal of minimizing the number of erroneous training exam-
ples that are automatically provided to the visual classifier.

3. OVERVIEW OF PROPOSED APPROACH

This paper presents a self-supervised learning approach to
identifying drivable terrain surface for a robot operating in
forested terrain. This approach has three separate stages:
a LIDAR-based ground estimation stage, a camera-based
self-supervised learning stage, and a camera-based online
learning stage. The first two stages provide training data to
train a visual classifier, whereas the third stage runs (during
navigation) between LIDAR scans.

In the experiments presented in Section 8 of this paper,
the robot remained stationary in the first stage. The LIDAR
tilt stage scanned to acquire a 3D point cloud. By applying
a feature extraction algorithm to these 3D points, seven fea-
tures were adopted to describe differences between ground
and nonground points and train a classifier to identify the
ground surface in those points. Combined with a triangu-
lated irregular network (TIN) approach, a set of 3D training
points are generated and projected into the image plane.

In the second stage, given the training set in the image
plane, a feature selection method is employed to select five

features that best describe differences between ground and
nonground appearance. Then an initial visual classifier is
learned by applying these selected features to the training
pixels.

In the third stage, an online learning algorithm is ac-
tivated to update the visual classifier in order to adapt to
changes in the environment.

This paper is organized as follows: Section 4 provides
an introduction of the system architecture and sensor cali-
bration. In Section 5, a ground surface estimation algorithm
based on LIDAR sensor data is briefly introduced. Algo-
rithms for visual feature selection and classifier training are
presented in Section 6. In Section 7, an online learning al-
gorithm is demonstrated. Experimental results and conclu-
sions are presented in Section 8 and Section 9.

4. SYSTEM ARCHITECTURE AND SENSOR
CALIBRATION

In this work, a small robotic platform is employed for ex-
perimental sensor data collection purposes (see Figure 1).
The robot base is a MobileRobots Pioneer 3-AT, and it is
equipped with a Point Grey Bumblebee XB3 camera, a
Hokuyo UTM-30LX LIDAR, a servo-controlled tilt stage,
and a step motor. The forward-looking camera is fixed in
front of the robot, and the LIDAR is mounted on a servo-
controlled tilt stage to enable collection of a 3D point cloud.
The camera and LIDAR are calibrated with respect to one
another, to enable the LIDAR point cloud to be projected
into image coordinates.

In the proposed self-supervised learning framework,
data from the LIDAR sensor are used to supervise training
of a vision-based classifier. This requires that the 3D LIDAR
points are mapped to the camera images. Thus, the pre-
cise relationship between 3D points and image pixels must
be known. For this task the calibration is implemented us-
ing the Laser-Camera Calibration Toolbox (Unnikrishnan &
Hebert, 2005). A brief description of the robot’s coordinate
systems and calibration parameters is given here.

Five coordinate frames are used in the following work:
world coordinates, robot coordinates, servo-controlled tilt
stage coordinates, LIDAR coordinates, and camera coordi-
nates (see Figure 2). World coordinates are represented in
an inertial frame and used for global path planning and
object localization. Robot coordinates are represented in a
robot-fixed frame and are used for local path planning. Be-
cause the servo-controlled tilt stage and camera are rigidly
mounted on the robot body, they are fixed with respect to
the robot coordinates.

To perform (offline) calibration, various calibration pa-
rameters and coordinate transformations must be identi-
fied, in order to map 3D points into image coordinates.

A 3D point is denoted by ML = [XL, YL, ZL] in servo-
controlled tilt stage coordinates. The LIDAR is mounted on
the servo-controlled tilt stage, which has just one degree
of freedom in the pitch direction. The 3D point ML can be

Journal of Field Robotics DOI 10.1002/rob
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(a) (b) (c)

(d)

Figure 1. Experimental robot platform, (a) lateral view and (b) top view. (c) Perception sensors: camera and LIDAR. (d) Servo-
controlled tilt stage and step motor

Figure 2. Robot coordinate system.

calculated as follows:

M
′
L = [XLYLZL]

′ =
⎡
⎣ sin σ

cos σ cos θ

cos σ sin θ

⎤
⎦ d, (1)

where D refers to the distance measured by LIDAR, σ refers
to the scanning angle in the LIDAR frame, and θ refers to
the pitch angle in the servo-controlled tilt stage frame.

It is assumed that the lens model is a pinhole cam-
era model. A 3D point is denoted by MC = [XC, YC, ZC ]
in camera coordinates. A rigid transformation between the

servo-controlled tilt stage and camera frames is as follows:

M
′
C = [R T][ML 1]

′
, (2)

where [R T] is the rotation and translation that relate the
servo-controlled tilt stage coordinates to the camera coor-
dinates. After this translation, the normalized pinhole pro-
jection is given by [

x

y

]
=

[
Xc/Zc

Yc/Zc

]
, (3)

where (x y) is the pixel projected onto the image frame
without distortion. Adjusting for radial lens distortion, the
normalized point is calculated as[

xr

yr

]
= (1 + k1r

2 + k2r
4 + k3r

6)
[

x

y

]
+ dx, (4)

where r2 = x2 + y2, and dx is the tangential distortion vec-
tor. In our application, we assume dx to be zero. The final
pixel coordinates of the point, (c, r), are then given by⎡

⎣c

r

1

⎤
⎦ = A

⎡
⎣xr

yr

1

⎤
⎦ +

⎡
⎣α γ u0

0 β v0
0 0 1

⎤
⎦

⎡
⎣xr

yr

1

⎤
⎦ , (5)

where A is called the camera intrinsic matrix with (u0, v0)
the coordinates of the principal point, α and β the scale fac-
tors in the image horizontal and vertical axes, and γ the
parameter describing the skewness of the two image axes.

Thus, given formulas (1)–(5) and the values for R, T, k1,
k2, k3, α, β, and γ , from the calibration, we can associate 3D
points from the LIDAR with image pixels from the camera
(as shown in Figure 3).

Journal of Field Robotics DOI 10.1002/rob
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(a) (b) (c) (d)

Figure 3. Visualized 3D point; (a) and (c) are images captured by camera in laboratory and forest; (b) and (d) are separately
colorized 3D points.

5. GROUND ESTIMATION USING LIDAR

In this section, we briefly review our two-stage approach to
ground plane estimation from 3D data, which was specif-
ically designed for sloped, rough environments (McDaniel
et al., 2010).

5.1. Approach Summary

The approach (McDaniel et al., 2010) divides the task of
ground plane identification into two stages. The first stage
is a local height-based filter, which is based on the assump-
tion that, in any vertical column (of specified dimensions)
containing range data points, only the lowest point can be-
long to the ground. In practice this eliminates a large per-
centage of nonground points from further consideration.
(In the test data sets presented here, 98.7% of data points
were eliminated through this method.) The second stage
uses a support vector machine (SVM) classifier (Burgers,
1998), which combines eight heuristically inspired features
to determine which of the remaining points belong to the
ground plane.

5.2. First Stage

Given a set of range data points in Cartesian space, the goal
of ground plane identification is to identify which of those
points lie on the ground surface. In this work, candidate
points are represented in an inertial frame with coordinates
(x, y, z).

In the first stage, the points are divided into (0.5 ×
0.5)-m columns based on their x and y values. These
columns are identified by indices (i, j ), where i = [x/0.5]
and j = [y/0.5]. In each of these columns, only the lowest
point (i.e., the point with minimum z value) is retained as
a possible ground point. For simplicity, the lowest point in
column (i, j ) is hereafter denoted Pi,j , and its coordinates
are referred to as (xi,j , yi,j , zi,j ). Figure 4 clarifies the con-
cept of dividing the Cartesian space into columns.

5.3. Second Stage

In the second stage, a variety of features are extracted
to represent attributes of each point Pi,j and the low-

Figure 4. A portion of the Cartesian space partitioned into
columns.

est points in each of the eight neighboring columns (i.e.,
Pi−1,j−1, Pi−1,j , Pi−1,j+1, Pi,j−1, Pi,j+1, Pi+1,j−1, Pi+1,j ,
and Pi+1,j+1, as shown in Figure 5. A set of eight
features was defined based on their usefulness in dis-
criminating ground from nonground. These features, de-
noted f1, . . . , f8, are combined into a feature vector Fi,j =
(f1, . . . , f8) for each point, which is used by a classifier to
identify whether that point belongs to the ground. These
features include

• f1: Number of occupied columns in the neighborhood
of column (i, j )

• f2: Minimum z of all neighbors minus zi,j• f3: Value of zi,j• f4: Average of all z values in neighborhood
• f5: Normal to best fit plane of points in neighborhood
• f6: Residual sum of squares (RSS) of best fit plane of

points in neighborhood
• f7: Pyramid filter
• f8: Ray tracing score

Journal of Field Robotics DOI 10.1002/rob
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Figure 5. A column and its neighbors.

A description for these eight features is presented below:

1. f1: Number of occupied columns in neighborhood. This fea-
ture is used to evaluate the density of points in column
(i, j ). This feature encodes the fact that bushes, shrubs,
and tree trunks typically block the trace of LIDAR scan-
ning and cast “shadows” in point clouds, which reduces
the number of points in occupied neighbors. Thus, not
every column (i, j ) will contain LIDAR points. This fea-
ture is computed as the number of occupied columns in
the neighborhood of column (i, j ):

f1 = N. (6)

2. f2, f3, f4: Features using z height values. Feature f2 ex-
presses the smoothness of the terrain around column
(i, j ). In general, ground can be considered to have a rel-
atively smooth surface compared to the edges of trees or
shrubs. Feature f2 takes the difference between zi,j and
the minimum z of all neighboring columns:

f2 = min(zi−1,j−1, zi−1,j , zi−1,j+1, zi,j−1,

zi,j+1, zi+1,j−1, zi+1,j , zi+1,j+1) − zi,j . (7)

Features f3 and f4 use the z value in each column,
encoding the assumption that the ground will gener-
ally not be located significantly higher than the robot.
This assumption is expected to be true except for cases
with highly sloped terrain. In that situation, f7 and
f8 will compensate for the drawback inherent in this
assumption:

f3 = zi,j (8)

f4 = (zi−1,j−1 + zi−1,j + zi−1,j+1 + zi,j−1 +
zi,j+1 + zi+1,j−1 + zi+1,j + zi+1,j+1) + zi,j . (9)

3. f5, f6: Features using best fit plane. f5 and f6 encode
the fact that ground is typically flatter than other
objects (e.g., shrubs, tree trunks, and canopy). The
plane that minimizes orthogonal distances to candi-
date points is found using principal components anal-
ysis. Thus, given the set of N points in the neigh-
borhood, Pk = [xi,j , yi,j , zi,j ], and their mean, P̄ =
(1/N )

∑N
k=1 Pk , the normal vector n is calculated as

n = arg min
n∈R3,‖n‖2=1

N∑
k=1

((Pk − P̄ )·n)2. (10)

Feature f5 is the dot product between the normal of the
plane and the z axis:

f5 = n·(0, 0, 1). (11)

f6 is another measurement of smoothness of the terrain,
and is calculated as

f6 = 1
N

N∑
k=1

((Pk − P̄ ) · n)2. (12)

4. f7: Pyramid filter. A ground filter similar to the one in
(Lalonde et al., 2006) was also implemented. This filter
counts the number of points falling within a downward-
facing cone with its vertex located at a candidate point.
To improve computational efficiency, this filter is here
discretized by forming a pyramid structure [instead of
a cone as in (Lalonde et al., 2006)] of cubic voxels under
each point Pi,j . The number of other candidate ground
points that fall within the pyramid of Pi,j is counted,
and this count is used as feature f7. A representative
pyramid of voxels is shown in Figure 6.

5. f8: Ray-tracing score. The last feature is inspired by ray
tracing. Intuitively, it is obvious that the ground (or any
other structure) cannot lie directly between the LIDAR
and any point it observes. Similarly, the ground cannot
lie above the line segment formed between the LIDAR
and the points it observes. Feature f8 quantifies this in-
sight using a voxel-based approach. For each (0.5 × 0.5
× 0.5)-m cubic voxel containing a point Pi,j , f8 is a sum
of the line segments passing directly under a voxel in
column (i, j ) that contains point Pi,j . Thus, points with
lower ray tracing scores are more likely to be ground,
and points with higher scores are less likely. This con-
cept is illustrated in Figure 7. The black arrow represents
a ray traced from the LIDAR to a data point. The vox-
els that this ray passes through are blue, and the voxels
above it are red. Any point in a red voxel would have its
ray tracing score incremented by one.

5.4. Training and Classification Description

To train the SVM classifier, a variety of point cloud data
sets in different scenes were collected for training pur-
poses. These data sets were labeled by hand to assign each

Journal of Field Robotics DOI 10.1002/rob
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Figure 6. A pyramid of voxels under a candidate data point. The voxel that contains the candidate point is at the pyramid apex.

Figure 7. Ray traced from data point back to LIDAR sensor source. Voxels above the traced line segment are red, and voxels along
the line segment are blue. (Image best viewed in color.)

point to ground/nonground classes. Then the feature vec-
tors of those labeled points were extracted according to the
method above. Given the training points and their feature
vectors, a SVM classifier is trained. Based on cross vali-
dation within the training data, a set of appropriate ker-
nel parameters can be found. For this work, the SVMclas-
sifier was implemented using LIBSVM (Chang, 2008). For
this paper a linear kernel was used with SVM parameter
C = 100 selected based on cross-validation. Using the
trained classifier, points belonging to a previously unla-
beled scene can be classified. The experiments are demon-
strated in the Section 8.

6. SELF-SUPERVISED VISUAL LEARNING

In the self-supervised learning algorithm proposed here,
the ground estimation algorithm is used to identify the
locations of 3D points that belong to the ground surface.
Then, using the calibrated and registered sensor system de-
scribed above, 3D ground points can be associated with pix-
els in the image captured by the camera. During navigation,
training examples can thus be provided to a vision-based
supervised classifier, in order to form a classifier to discrim-
inate between ground points and nonground points.

Several issues must be addressed before the proposed
learning algorithm can be successfully implemented. First,

Journal of Field Robotics DOI 10.1002/rob
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the ground estimation algorithm analyzes only the single
lowest point in every column, to determine whether it be-
longs to the ground surface. This results in a sparse pro-
jection of points into the image plane. Second, the ground
estimation algorithm discards nonground points during
its filtering stage, which results in a sparse number of
data associated with features such as leaves or branches,
which could be used as negative training data in the visual
classifier.

The proposed self-supervised learning algorithm is
composed of three elements: training set generation, fea-
ture selection, and classifier training. These elements are
described here.

6.1. Training Set Generation

In the LIDAR-based ground estimation algorithm, each
point in the 3D point cloud is assigned membership in a
particular column, and the lowest point in each column is
used as a candidate point for ground estimation. As noted
above, when these points are associated with pixels, this
results in a sparse data set for visual classifier training.
Because of this, a training set generation algorithm has
been developed to yield additional 3D candidate training
points from the 3D point cloud dataset. In this paper, a tri-
angulated irregular network (TIN) is employed to model
the ground plane. Additional 3D points are then extracted,
which are used for projection into the image frame for vi-
sual classifier training.

A TIN is a data structure used for surface representa-
tion. There are various ways to create a TIN, but the most
frequently used method is Delaunay triangulation. Delau-
nay triangulation finds triangles from a set of points such
that no point in the set is inside the circumcircle (or circum-
sphere in 3D) of any other triangle in the triangulation. In
this paper, Delaunay triangulation is used to model the sur-
face of the ground plane for each scene using the LIDAR
data which was classified as ground. The resulting triangu-
lation for each scene is presented in Section 8, in which the
color of each triangle is proportional to its height.

The local height-based filter presented in the previous
section eliminates approximately 98% of the data points
after filtering. When the surface model is built, some of
those eliminated points can be used to complement train-
ing data. In other words, the TIN-based surface model is
calculated by using the lowest 3D points that are not fil-
tered by the local height-based filter, which are classified
as ground points. In the training set generation stage, those
raw points that were filtered by the local height-based filter
are considered as candidates to complement visual train-
ing data. For simplicity, we call these points filtered points
in the following sections.

The plane of the triangle, Ax + By + Cz = D, can be
found by calculating the normal to that triangle. Given
the three corners of the triangle, {p1, p2, p3}, from ground
points, where each point is a vector of pt = [xt , yt , zt ], there

exist certain filtered points (q1, . . . , qj ), where each point is
a vector of qi = [xq

i , y
q
i , z

q
i ] in the triangle in the X–Y plane.

More training data are generated via the following process.
First, the normal to this triangle is computed as

n = (p2 − p1)×(p3 − p1) = Ax̂ + Bŷ + Cẑ. (13)

The last coefficient can be calculated using one of the three
corners p1, p2, p3:

D = Ax1 + By1 + Cz1. (14)

The estimated ground height at (xq
i , y

q
i ) of qi can be calcu-

lated by

z
Q
i = (D − Ax

q
i + By

q
i )/C, (i = 1, . . . , N). (15)

The decision on whether qi belongs to a class composed
of ground points or a class composed of nonground points
can be made based on the following condition:

Vqi
=

⎡
⎢⎣

1 z
q
i ≤ z

Q
i + T2

−1 z
q
i ≥ z

Q
i + T1

0 z
Q
i + T1 > z

q
i > z

Q
i + T2

⎤
⎥⎦ , (16)

where Vqi
denotes the class the point q1 belongs to. T1, T2

are thresholds to measure the height distances of ground
points or nonground points to the estimated plane. (For this
work, T1 is 1,000 mm, and T2 is 10 mm.) Here, “0” means
the point is uncertain. “1” means the point belongs to the
ground, whereas “−1” means the point does not belong
to the ground. Points in the “ground” and “nonground”
classes can then be used as positive training points (for
points on the ground surface) and negative training points
(for points not on the ground surface), respectively. An ex-
ample of a resulting training set is shown in Figure 8.

Figure 8. Example of projected training points on the image.
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Figure 9. Examples of forest appearances for various data sets.

6.2. Feature Selection and Classifier Training

Given ground and nonground training points in an im-
age, visual features (i.e., color and texture) associated with
each point can be used for classifier training. Here, no a
priori assumption is made regarding which features will
have a high degree of discriminative power in separating
ground/nonground classes in the forest environment. This
is because the appearances of ground and nonground re-
gions in the forest environment can vary widely from scene
to scene and season to season (as shown in Figure 9).

In this paper, the AdaBoost algorithm associated with
Fuzzy SVM (Lin & Wang, 2002) is employed for feature se-
lection purposes. Candidate features are divided into color
features and texture features. The six candidate color fea-
tures include both RGB and HSV features [R, G, B, H,
S, V]. Nine candidate texture features are Haar features
in three directions (vertical, horizontal, and diagonal) and
three scales. Haar features are extracted in the gray image
channel. Thus, there are 15 candidate features for selection.

The AdaBoost algorithm was first introduced in
(Freund & Schapire, 1997). The purpose of this algorithm
is to combine several weak classifiers into a strong classi-
fier. Another benefit of this algorithm is that, given many
features, the boosting process analyzes individual feature
contributions in classifying training data. During the boost-
ing process, the weight on each training sample is updated
according to the weak classifier in each boosting round.
The weight will be smaller if the sample is rightly classi-
fied by the weak classifier, and vice versa. In that case, the
weak learner would focus much more on those that were
not correctly classified in the next round of boosting. As a
result, each stage of the boosting process, which selects a
new weak classifier, can be viewed as a feature selection
process (Viola & Jones, 2001).

The classic AdaBoost algorithm (Viola & Jones, 2001)
uses a stump-based weak classifier, which performs well in
feature selection for the final cascade classifier in the ap-
plication of face detection. However, in the application de-
scribed here, the task is to select several good features, not
to form a final cascade classifier. In that case, the weak clas-
sifier should have more capability for evaluating the dis-
criminative power of each feature.

In this paper, we present a novel weak classifier in
the AdaBoost algorithm. The Fuzzy SVM, which was first
introduced in (Lin & Wang, 2002), can accept as input a

weight on each training sample. The weight can make dif-
ferent contributions to forming the decision surface. In an-
other words, higher weights on training samples have more
contribution in forming the decision surface. The process of
feature selection in this paper is shown as Algorithm 1.

AdaBoost and the Fuzzy SVM algorithm are used to
select a good feature set. Then, given the selected features,
the support vector machine is implemented to determine a
decision hyperplane in the feature space for the visual clas-
sifier. Based on cross validation within the training data, a
set of appropriate kernel parameters can be found. [For this
work, the SVM classifier was implemented using LIBSVM
(Chang & Lin, 2008), and a RBF kernel was employed.]

7. ONLINE LEARNING

In the proposed algorithm, the robot uses data from a LI-
DAR scan to generate ground and nonground points for
training of a vision-based classification algorithm. How-
ever, because the forest environment’s appearance can
change frequently because of variable illumination con-
ditions or changes in vegetation type, the visual classi-
fier should be periodically updated (i.e., retrained). Here,
an online learning algorithm is employed to allow adap-
tation of the visual classifier to changing environmental
appearance.

The online learning algorithm is based on the assump-
tion that the drivable ground surface is simply connected
in the image plane. Given this assumption, a metric to eval-
uate the quality of previous classification is employed. This
metric is analyzed to determine whether to retrain the vi-
sual classifier.

7.1. Evaluation

To evaluate the performance of the classifier, a three-step
process is used. First, morphological operations are used
to identify areas that are likely to be either ground or non-
ground. Second, the classification output from the SVM is
assessed to identify potentially misclassified points. Third,
a numerical metric is calculated to determine the pre-
dicted classification accuracy. Note that this approach does
not rely on hand-labeled training data, but rather on the
assumption that the morphological operations will ade-
quately separate ground regions from nonground regions.
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Algorithm 1. AdaBoost and Fuzzy SVM for feature selection.

7.1.1. Morphological Operation

Morphological operations (Soille, 1999) are commonly used
to understand the structure of an image. Morphological op-
erations play a key role in applications such as machine vi-
sion and automated object detection.

In this paper, the main morphological operations are
flood filling and hole filling. These operations are imple-
mented to determine the largest connected ground area and
erode all the holes (i.e., nonground pixels) in that connected
ground area. Then the largest connected ground region is
labeled as ground and all the other regions are labeled as
nonground regions. The process of morphological opera-
tion is illustrated in Figure 10. The process separates a clas-
sification result into two regions: a ground region and a
nonground region.

It should be noted that the morphological operation
has the risk of eroding small obstacles in front of the robot.
To mitigate this problem in practice, we place the camera as
low as possible. As a result, small obstacles that were erro-
neously eroded could easily be traversed by the robot.

7.1.2. Potentially Misclassified Points Detection

Classification results are then compared with the outputs
of the morphological operation (illustrated in Figure 10).
Points classified as ground by the classification stage that
lie in the nonground regions of the morphological result are

assumed to be potentially misclassified points. Also, points
classified as nonground by the classification stage that lie
in the ground regions of the morphological result are as-
sumed to be potentially misclassified points. These poten-
tially misclassified points are labeled as a new training set.

7.1.3. Classification Evaluation

An evaluation function is proposed to evaluate the perfor-
mance of the classification result described in the previ-
ous section, and determine if the visual classifier should
be retrained online. This evaluation function relies on the
assumption mentioned in the previous section that the
ground region is simply connected. The function is com-
puted as

EAFP =
H∑

r=1

W∑
c=1

V1(r, c)/
H∑

r=1

W∑
c=1

RM
1 (r, c) (17)

EAFN =
N∑

j=2

H∑
r=1

W∑
c=1

Vj (r, c)/
N∑

j=2

H∑
r=1

W∑
c=1

RM
j (r, c) (18)

EAF =
N∑

j=1

H∑
r=1

W∑
c=1

Vj (r, c)/
N∑

j=1

H∑
r=1

W∑
c=1

RM
j (r, c) (19)
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Figure 10. Morphological operation process. “Classification” shows the result obtained directly from the SVM classifier. The other
four images illustrate various stages of morphological operations, such as flood filling and hole filling.

Vj (r, c) =
[

1, RC
j (r, c) �= RM

j (r, c)
0, RC

j (r, c) = RM
j (r, c)

,

r = 1, . . . , H, c = 1, . . . , W, j = 1, . . . , N

]
, (20)

where EAFP refers to error rate of assumption-based false
positive, EAFN refers to error rate of assumption-based false
negative, and EAF refers to error rate of assumption-based
classification false. N is the number of regions after the
morphological operations. V1 is the ground region, whereas
Vj , (j = 2, . . . , N) refers to nonground region, (r, c) denotes
a pixel position in the image and RC

j (r, c) is the value of
the classification result at (r, c), whereas RM

j (r, c) is the
morphological operation result at (r, c). Vj (r, c) indicates
whether RC

j (r, c) and RM
j (r, c) belong to the same class

(ground/nonground). So the performance of the ground
detection classifier is analyzed by computing the values of
EAFP, EAFN, and EAF derived from the formulas (17)–(20).

The values of EAFP, EAFN, and EAF, can be compared
with three user-defined threshold values, TAFP, TAFN, and
TAF. These threshold values determine the update rate for
the online learning process. The baseline evaluation val-
ues E0

AFP, E0
AFN, and E0

AF are calculated in an initial frame
in which the visual classifier is trained directly by the LI-
DAR, and represent the best performance the system can
be expected to reach. In this work, parameter values were
chosen as TAFP = E0

AFP + 0.02, TAFN = E0
AFN + 0.02, and

TAF = E0
AF + 0.02). We called the value of 0.02 the margin

of error tolerance. In later frames, if any of EAFP, EAFN,
and EAF was larger than its corresponding threshold, the
retraining process was triggered.

7.2. Online Learning

Given the comparison between the classification result
and the morphological operation, potentially misclassified

points can be extracted. Those points can be considered
as a new training set and can be inserted into the train-
ing set database for online retraining. To bound the size of
the training database, old training points may be discarded,
with an equal number of new training data added from the
set of potentially misclassified points. There are three key
questions related to this process: how to reduce existing
training data, how to add new training data, and how to
filer ambiguous points.

1. Reducing the old training data. An SVM decision function
can generally be described as follows (Burgers, 1998):

f (x) =
∑

aiyiK(xi, x) + b (21)

D(x) = f (x)/y, (22)

where K is the kernel function, xi is the support vector
and yi refers to its corresponding class, and b is the off-
set. The decision function is used to determine which
class x belongs to. The value of D(x) reflects the dis-
tance from x to the decision hyperplane. Using (21) and
(22) to compute the values of all training data, we can
find their distances to the decision hyperplane. Because
the decision hyperplane is composed of support vectors
that are not far from the decision hyperplane, the greater
the distance, the less contribution it has to determining
the decision hyperplane. Given this, we discard the old
training points according to their contributions.

2. Adding new training data. In each frame, many poten-
tially misclassified points are considered as candidates.
It is obvious that all the distances of these points to the
decision hyperplane are negative, because they are mis-
classified points (based on the morphological assump-
tions). The smaller the value of the distance, the more
contribution it has to determining the new decision hy-
perplane. In that case, the decision on how to select new
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Figure 11. Illustration of regions of interest for learning.

training data is based on the contributions of those can-
didate points.

3. Filtering ambiguous points. As mentioned above, poten-
tially misclassified points are generated by comparing
classification results and morphological results. This
heuristic is least reliable near the boundary separating
the ground and background regions. To minimize the
error caused by training with mislabeled data, points
nearer to the morphological operation boundary than a
specified threshold are not considered as new training
data (see Figure 11). In this paper, the threshold is set as
20 pixels from the boundary.

8. EXPERIMENTAL RESULTS

The proposed method for visual detection of the terrain
surface has three-stages: ground detection from 3D LIDAR
data, self-supervised visual learning based on the result of
LIDAR data points, and online learning.

To characterize the performance of this approach, the
algorithm was applied to numerous experimental data sets.
Experimental results of the first stage are presented in
Section 8.1. Results from the second and third stages are
demonstrated in Sections 8.2 and 8.3. Results from two ad-
ditional forest scenes are presented in Section 8.4.

8.1. Experiments of Ground Detection
from LIDAR Data

LIDAR data were acquired for five different forest envi-
ronments in the greater Boston area. In this paper, these
five data sets will be used to demonstrate the effectiveness
of the classification and modeling techniques that are pre-
sented. The first set of data was collected in a simple and
relatively flat forest environment. These data are meant to
be a baseline set that will be compared with the other, more
complex scenes. The data set contains several deciduous
trees and shrubs, but is largely open. The moderate scene is
more cluttered with numerous deciduous trees and shrubs
and significant ground cover. The remaining two data sets,
dense1 and dense2, contain significantly more deciduous

trees than the previous data sets, and also have consider-
able sloped terrain. In the dense1scene, there is a total ele-
vation change of 4.2 m and the LIDAR is scanning down the
hill. In the dense2, the total change is 3.1 m and the LIDAR
is scanning up the hill.

There are two stages in LIDAR-based classification.
The results in each stage are presented below.

1. Results of Stage 1. Stage 1 applies a local minimum z fil-
ter. This filter drastically reduces the number of points
to be analyzed. It is important to note that each column
in Cartesian space may contain many ground points,
but only one minimum z point. Therefore, many ground
points may be removed. Also, sometimes a higher frac-
tion of ground points are removed than of nonground
points, due to the fact that the ground near the LIDAR
is scanned much more densely than trees and shrubs in
the distance.

To assess the accuracy of this method, it is useful to
analyze the types of points present in each column. For
example, columns that are farther away from the LIDAR
may not have any ground points because the ground
is occluded by trees and shrubs. However, if a column
contains both ground and non-ground points, a ground
point should be selected if the algorithm is robust. These
results are summarized in Table I.

As expected, there are many columns in each scene
where there are only nonground points. However, in the
columns with both ground and nonground points, this
filter stage selects ground points an average of 98.65% of
the time.

2. Results of Stage 2. The second stage of LIDAR-based
classification uses a SVM classifier that is trained using
hand-labeled point cloud data sets to assign each of the
minimum z points as being ground or nonground. The
results are demonstrated in Table II.

The results suggest that this classifier can effectively
and consistently identify points belonging to the ground
class. The average accuracy over the five data sets is
86.28%.
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(a)

(d) (e) (f)

(g) (h) (i)

(j)

(m) (n) (o)

(k) (l)

(b) (c)

Figure 12. Hand-labeled point clouds of (a) baseline scene, (d) sparse scene, (g) moderate scene, (j) dense1 scene and (m) dense2
scene. Black points indicate ground, blue points indicate bushes/shrubs, red points indicate trunks, and green points indicate
canopy. (b), (e) ,(h), (k) and (n) are ground point estimation results in each scene. Each includes true positive and false positive
points. (c), (f) ,(i), (l) and (o) are ground surface of TIN in different scenes. (Image best viewed in color.)

It is helpful to visualize these results using point
clouds. Figures 12(c, d, g, j, m) demonstrate the hand-
labeled data sets that are used as ground truth. Fig-
ures 12(b, e, h, k, n) show the LIDAR data classified
as ground by the SVM. This includes both true pos-
itives (ground points correctly classified as ground)
and false positives (nonground points incorrectly clas-
sified as ground). Figure 13 shows the receiver operat-
ing characteristic (ROC) curves for the five data sets. As
shown in Figure 13, fairly low false positive rates can

be achieved while relatively high true positive rates are
maintained.

8.2. Experiments of Self-Supervised Visual Learning

As mentioned in Section 6, there are three stages in self-
supervised visual learning: training data generation, visual
feature selection, and visual classifier training. The results
in each stage are presented below.
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Table I. Stage 1 local minimum z filter: Column analysis.

No. of No. of Columns Columns Columns with Columns with Accuracy
initially points with with both and both and of
Sensed after ground nonground ground nonground columns

3D points filtering data data selected selected with both

baseline 69,598 938 542 261 135 0 100%
sparse 141,785 2,309 509 1,174 622 4 99.35%
moderate 154,403 1,625 251 1,176 193 5 97.41%
dense1 112,988 1,521 815 313 384 9 97.66%
dense2 159,023 1,574 694 352 521 7 98.66%
Total 637,797 7,967 2,811 3,276 1,855 25 98.65%

Figure 13. ROC curves for baseline, sparse, moderate, dense1, and dense2 scenes.

1. Results of training data generation. In Section 6.1, De-
launay triangulation is introduced to model the sur-
face of the ground plane. In the experiments, each
scene was modeled by TIN to create the surface of the
ground plane from a set of points. Figures 12 (c, p, i,
l, o) show the resulting triangulation for each scene, in

which the color of each triangle is proportional to its
height.

Additional training data are generated by com-
paring the height of the ground plane with the actual
sensed 3D LIDAR points. The points that are lower than
the plane are selected as ground training data, whereas
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Table II. Stage 2 results of classification.

True ground True bushes and shrubs True tree stem true tree canopy Accuracy
classified classified classified classified of columns
as ground as ground as ground as ground with both

baseline 677/666 0/0 26/10 232/0 97.75%
sparse 1,131/1,032 463/149 47/12 664/2 88.63%
moderate 444/441 752/420 50/17 379/6 72.55%
dense1 1,199/1,131 56/39 198/30 68/2 90.86%
dense2 1,215/1,077 164/67 105/19 89/0 98.66%
Total 4,666/4,347 1,435/675 426/88 1,432/10 86.26%

the points that are higher than the plane are selected as
nonground training data.

2. Results of feature selection and classification of visual classi-
fier. A comparison is presented here to demonstrate the
efficacy of the AdaBoost and Fuzzy SVM-based feature
selection algorithm in visual classification. In this exper-
iment, the training set is generated by the algorithm de-
scribed in Sections 5 and 5.1. Given a training set, three
individual classifiers are trained for ground prediction.
Those results are compared to a hand-labeled ground
truth for comparison. The results are shown in Figure 14.

Here, the following SVM classifier formulations
were compared, for use in vision-based ground detec-
tion.

• Selected features. The classifier was trained with the
five best features selected by the AdaBoost-based al-
gorithm.

• All features. The classifier was trained with all 15 of
the candidate visual features.

• Remaining features. The classifier was trained with
the 10 features that were not selected by the
AdaBoost-based algorithm.

Figures 14 (a, b, c, d) show the classification results
of the classifier trained by the five best selected features.
The selected features classifier (using 5 features) was
observed to perform well compared to the all-features
classifier that employed 15 features (see Figures 14 (e, f,
g, h)). However, the selected features classifier exhibits
improved computational efficiency because it requires
fewer feature extraction operations than the all features
classifier. The remaining features classifier (trained on
the 10 features that were not selected) performs more
poorly than the other two classifiers.

Note that in the second and fourth scenes, the se-
lected features classifier performs slightly better than
the all features classifier in terms of detection rate.
We expect that this is because the additional fea-
tures introduce confounding information for separat-
ing ground/nonground classes. Also, it should be noted

that the features selected vary from scene to scene, based
on the specific visual properties of each individual envi-
ronment.

8.3. Experiments with Online Learning

The proposed approach to ground detection by visual sen-
sors includes two phases: an initial training phase and
an online learning phase. In the initial phase, the visual
classifier is trained based on LIDAR-identified training
data. In the online phase, visual classifier training data
are augmented to include results from online learning
based on morphological analysis. The approach was ap-
plied to experimental data sets that were taken in the
Breakheart Reservation, which is located south of Boston,
Massachusetts. Numerous data sets were collected.

For each set, the frame rate was 1 Hz. The robot moved
at 1 m/s and traveled approximately 130 m in the forest.
Figure 15 shows the performance of the online learning
approach as compared to a visual classifier trained based
solely on LIDAR data captured in the first frame. The ap-
pearance of the environment changed because of changes
in illumination during the experiment. As can be seen in
the figure, the accuracy of the fixed classifier, shown in red,
deteriorated steadily. In contrast, the accuracy of the clas-
sifier using online learning remained high throughout the
experiment, demonstrating that it is capable of adapting to
the changing environment.

In the first forty frames, the average detection accu-
racy of the online learning algorithm was 85.62%, whereas
the accuracy without the online learning algorithm was
84.73%. Both algorithms performed relatively well, because
the environment appearance did not change dramatically
during this initial period.

During frames 41–126, the environment illumination
changed significantly. During this period, the performance
of the nononline learning algorithm degraded, whereas the
online learning algorithm maintained good performance.
Table III compares the results of the two algorithms.

Journal of Field Robotics DOI 10.1002/rob



292 • Journal of Field Robotics—2012

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m)

Figure 14. Classification result and classification comparison: (a), (b), (c), (d) are raw image data captured from four different
scenes. (e), (f), (g), (h) are results classified by the “selected features” classifier. (i), (j), (k), (l) are ROCs of the three classification
results. (The red line refers to the “selected features” classifier. The number refers to the selected feature number. The green line
refers to the “all features” classifier. The blue line refers to the “remaining features” classifier. (m) is the feature map, where the
first six features are (red, green, and blue) in the RGB color space, then (hue, saturation, and value) in HSV color space. The final
nine features are Haar features in vertical, horizontal, and diagonal directions at 3 × 3, 7 × 7 and 11 × 11 scales.

Table III. Comparison results of online learning algorithm
and nononline learning algorithm.

Online learning Nononline learning

First frames 90.12% 90.12%
1–40 frames 85.62% 84.73%
41–126 frames 83.21% 73.62%
Online learning times 21 0
Average accuracy 83.96% 77.15%

Experiments from two additional traverses are pre-
sented here. These experiments were performed in two sep-
arate regions in forest with increased terrain slope, com-
pared to the experiment described in the previous section.

In the first scenario (as shown in Figure 16), the robot
moved from relatively flat terrain to sloped terrain (ap-
proximately 10 deg). During robot motion, illumination
and vegetation properties changed. In Figure 16(a) the blue
points are raw LIDAR points that fall outside of the camera
view. The green points are raw LIDAR points that can be
projected into the image. The red points are LIDAR points
that are classified as ground points using the LIDAR-based
classification and training data generation presented in Sec-
tion 5 and Section 6.1. The right image of Figure 16(a) shows
the training samples projected from LIDAR points into im-
age pixels. Given these training data, the 1st, 2nd, 6th, 11th,
and 15th features were selected. Using these selected fea-
tures and training samples, the online learning results are
shown in Figure 16(b). Raw and classified images with in-
dex numbers are also shown in Figure 16(b).
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(a) Frame 001 (b) Frame 019 (c) Frame 037 (d) Frame 055

(e) Frame 072 (f) Frame 090 (g) Frame 108 (h) Frame 126

(i)

Figure 15. (a–h) The selected visual detection results from consecutive frames, (Red results are generated from the initial classifier
trained by 3D LIDAR points mentioned in Section 6 without online learning, whereas blue refers to online learning.) (i) The
detection accuracy of those results.

For this data set, the self-supervised learning method
exhibited an average accuracy of 84.36%, whereas the re-
sults for the method including morphological operations
exhibited an average accuracy of 94.83%. A traditional su-

pervised classifier (trained once, at the initial frame, by LI-
DAR data) exhibited an average accuracy of 72.54%. Per-
formance of the traditional supervised classifier was ob-
served to degrade after the 13th frames, likely because of
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(a)

(b)

Figure 16. Experiment in sloped terrain in forst: (a) labeled data from LIDAR sensor and projection into image; (b) indexed raw
and classifed images.
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(a)

(b)

Figure 17. Experiment in dense and bumpy environment in forest; (a) labeled data from LIDAR sensor and projection into image;
(b) indexed raw and classified images.
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significant changes in illumination (i.e., direct sunlight
passing through the canopy to illuminate the forest floor).

In the second scenario (shown in Figure 17), the
robot traveled through a region with denser vegetation
and a significantly rougher ground surface. Again, illu-
mination changed significantly during the experiment. In
Figure 17(a) the blue points are raw LIDAR points that
fall outside of the camera view. The green points are raw
LIDAR points that can be projected into the image. The red
points are LIDAR points that are classified as ground points
using LIDAR-based classification and training data genera-
tion presented in Section 5 and Section 6.1. The right image
of Figure 17(a) shows the training samples projected from
LIDAR points into image pixels. Given these training data,
the 4th, 6th, 9th, 11th, and 15th features were selected. Us-
ing these selected features and training online learning re-
sults are shown in Figure 17(b). Raw and classified images
with index numbers are also shown in Figure 17(b).

For this data set, the self-supervised learning method
exhibited an average accuracy of 81.46%, whereas the
method using morphological operators exhibited an aver-
age accuracy of 95.21%. A traditional supervised classifier
(trained once, at the initial frame, with LIDAR data) exhib-
ited an average accuracy of 74.27%. Performance of the tra-
ditional supervised classifier was observed to degrade af-
ter the 12th frame, likely because of the combined effects of
changes in illumination and vegetation properties.

Collectively, these experiments demonstrate the effec-
tiveness of the proposed methodology. Specifically, they
show that the online learning algorithm is able to maintain
good performance despite changing environmental condi-
tions. This is in contrast to a traditional supervised classi-
fier, which exhibits poor robustness to changing conditions.
Also, these experiments demonstrate the utility of employ-
ing morphological operations to improve the performance
of online learning methods. This is an important issue for
systems that employ learning, or automatic training, be-
cause presenting poor training examples to a learning sys-
tem can substantially degrade performance.

9. CONCLUSION

The paper has presented an approach to self-supervised
visual learning for terrain surface detection in forest en-
vironments. By the application of feature extraction on a
3D point cloud, the ground surface can be assigned using
a traditional supervised SVM classifier. Then ground plane
modeling using Delaunay triangulation is used to generate
adequate training samples and initialize a self-supervised
visual classifier. The method exploits the accuracy of LI-
DAR sensors to accurately generate 3D point clouds, and
the high frame rate of a visual sensor for classifying terrain.
A novel approach to morphological operations is imple-
mented to evaluate the performance of the current visual
classifier and to activate an online learning process for re-
training the visual classifier. This allows the robot to adapt

to environment changes, and improves the performance of
vision-based navigation in forest environments. Also, in the
feature selection algorithm, the paper applies the Fuzzy
SVM classifier as a weak learner in the AdaBoost process,
which improves the capabilities of AdaBoost in feature
selection.

APPENDIX: INDEX TO MULTIMEDIA EXTENSIONS

The videos shown in the table are available as Supporting
Information in the online version of this article.

Extension Media type Description

1 Video Sensor system experiment video
2 Video Experimental results for terrain

surface detection
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